Linearization of Dynamic Equations of Flexible Mechanisms-a Finite Element Approach
نویسنده
چکیده
A finite element based method is presented for evaluation of linearized dynamic equations of flexible mechanisms about a nominal trajectory. The coefficient matrices of the linearized equations of motion are evaluated as explicit analytical expressions involving mixed sets of generalized co-ordinates of the mechanism with rigid links and deformation mode co-ordinates that characterize deformation of flexible link elements. This task is accomplished by employing the general framework of the geometric transfer function formalism. The proposed method is general in nature and can be applied to spatial mechanisms and manipulators having revolute and prismatic joints. The method also permits investigation of the dynamics of flexible rotors and spinning shafts. Application of the theory is illustrated through a detailed model development of a four-bar mechanism and the analysis of bending vibrations of two single link mechanisms in which the link is considered as a rotating flexible arm or as an unsymmetrical rotating shaft, respectively. The algorithm for the calculation of the matrix coefficients is directly emenable to numerical computation and has been incorporated into the linearization module of the computer program SPACAR.'
منابع مشابه
Maximum Allowable Dynamic Load of Flexible 2-Link Mobile Manipulators Using Finite Element Approach
In this paper a general formulation for finding the maximum allowable dynamic load (MADL) of flexible link mobile manipulators is presented. The main constraints used for the algorithm presented are the actuator torque capacity and the limited error bound for the end-effector during motion on the given trajectory. The precision constraint is taken into account with two boundary lines in plane w...
متن کاملDynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach
This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...
متن کاملDynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle
In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many diffic...
متن کاملDynamics of Flexible Manipulators
This paper presents an application of Continuum (i.e. Lagrangian) and Finite Element Techniques to flexible manipulator arms for derivation of the corresponding Dynamic Equations of Motion. Specifically a one-link flexible arm is considered for detailed analysis, and the results are extended for the case of a two - link flexible manipulator. Numerical examples are given for the case of both one...
متن کامل3D Finite element modeling for Dynamic Behavior Evaluation of Marin Risers Due to VIV and Internal Flow
The complete 3D nonlinear dynamic problem of extensible, flexible risers conveying fluid is considered. For describing the dynamics of the system, the Newtonian derivation procedure is followed. The velocity field inside the pipe formulated using hydrostatic and Bernoulli equations. The hydrodynamic effects of external fluids are taken into consideration through the nonlinear drag forces in var...
متن کامل